

VIGILÂNCIA GENÔMICA DO SARS-COV-2 EM MATO GROSSO

2025

N. 49/2025

SES Secretaria de Estado de Saúde

Mato Lacen
Grosso

INTRODUÇÃO

O sequenciamento genético emerge como uma ferramenta crucial para decifrar os genomas virais, possibilitando a identificação de novos patógenos e aprofundando a compreensão sobre a origem e transmissão de vírus emergentes. No caso do SARS-CoV-2 o sequenciamento desempenha um papel essencial no acompanhamento, monitoramento e identificação das diversas linhagens e sublinhagens que circulam no Estado. Isso tem relevância considerável, dada a evolução contínua do vírus, que se afasta da estirpe original identificada em Wuhan.

A doença do coronavírus 2019 (COVID-19) é uma doença viral altamente contagiosa causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). Esses surtos são principalmente atribuídos ao surgimento de variantes mutantes do vírus. Como outros vírus de RNA, o SARS-CoV-2 adapta-se com a evolução genética e o desenvolvimento de mutações. Isso resulta em variantes mutantes que podem ter características diferentes das suas cepas ancestrais. Desde março de 2023, a Organização Mundial da Saúde (OMS) atualizou o sistema de rastreio e as definições operacionais para variantes de preocupação (VOC), de interesse (VOI) e sob monitoramento (VUM).

Várias variantes do SARS-CoV-2 foram descritas durante o curso desta pandemia, entre as quais apenas algumas são consideradas variantes de preocupação (VOCs). Com base na atualização epidemiológica da OMS, 5 VOCs do SARS-CoV-2 foram identificadas desde o início da pandemia:

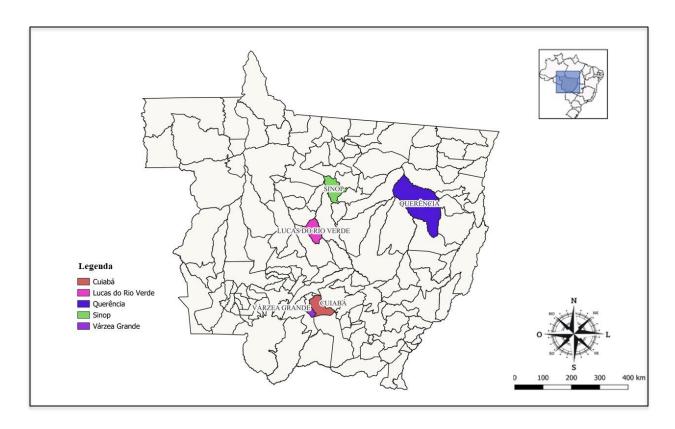
- **Alfa (B.1.1.7):** Primeira variante preocupante, que foi descrita no Reino Unido no final de dezembro de 2020;
- Beta (B.1.351): relatado pela primeira vez na África do Sul em dezembro de 2020;
- **Gamma** (**P.1**): Primeiro relato no Brasil no início de janeiro de 2021;
- **Delta (B.1.617.2):** relatado pela primeira vez na Índia em dezembro de 2020;
- **Ômicron** (**B.1.1.529**): relatado pela primeira vez na África do Sul em novembro de 2021;

O sequenciamento genético realizado nessas amostras proporciona a identificação e monitoramento das linhagens e sublinhagens do SARS-CoV-2 circulantes em diversas regiões de Mato Grosso. Esses dados desempenham um papel fundamental para oferecer suporte às estratégias de saúde pública, permitindo o rastreamento de surtos, a avaliação da eficácia das medidas de controle e o aprofundamento na compreensão da dinâmica de disseminação do vírus.

AMOSTRAGEM

Foram selecionadas 19 amostras positivas para o SARS-CoV-2, as quais foram coletadas nos dias 02 a 25 de setembro de 2025, referente a semanas epidemiologicas 36° a 38° de 2025.

As amostras foram extraidas em protocolos automatizados e amplificadas pelo método RT-PCR em tempo real foi realizada no termociclador ABI 7500™ com o kit molecular INF-A/INF-B/SC2 da Bio-Manguinhos para amostras de SARS-CoV-2. Todas as amostras positivas apresentaram valores de Ct (cycle threshold) que variaram entre 15 e 26. Os pacientes são referente aos municípios de Cuiabá, Várzea Grande, Sinop, Lucas do Rio Verde e Querência (**Figura 1**).


A Montagem do genoma e classificação das variantes foi realizada pelo software ViralFlow (https://viralflow.github.io/index.html, versão v1.0.1), e revisados no Pangolin (Versão 4.3, pangolin-data v1-22) e Nextclade (version 3.14.5), e analisadas pelos softwares como: *CodonCode*; *AliView*. A determinação das linhagens foi realizada utilizando as ferramentas *Pangolin, Nextclade* (https://pangolin.cog-uk.io/) (https://clades.nextstrain.org/).

RESULTADOS

Todas passaram pelo controle de qualidade apresentando cobertura do genoma superior a 85%, e o controle negativo, seguiu o padrão esperado sem nenhuma contaminação (**Tabela 1**).

Os genomas foram sequenciados utilizando a tecnologia desenvolvida pela Illumina® (MiSeqTM), pelo kit CovidSeq 300 ciclos.

Figura 1: Mapa do Estado de Mato Grosso, destacando os municípios onde foram obtidas as amostras e caracterizadas as novas sequências genômicas do SARS-CoV-2.

SES-Secretaria de Estado de Saúde Secretaria Adjunta de Atenção e Vigilância em Saúde Laboratório Central de Saúde Pública de Mato Grosso-LACEN/MT

Tabela 1: Informações sobre as amostras sequenciadas, cobertura do genoma e as respectivas linhagens identificadas do vírus SARS-CoV-2

Nº Interno	Requisição_GAL	ldade	Gênero	Município Requisitante	UF	Data da Coleta	Ct	Cobertura	Linhagem	ID_Sequência
2950	250722000188	5 meses	Masculino	SINOP	MT	02/09/2025	22	98.0%	XFG.3.4	hCoV-19/Brazil/MT-LACENMT-510657058/2025
2985	250102013079	38 anos	Masculino	CUIABÁ	MT	08/09/2025	25	93.5%	XFG.3.4.1	hCoV-19/Brazil/MT-LACENMT-510657059/2025
3028	250106007540	26 dias	Feminino	VÁRZEA GRANDE	MT	11/09/2025	20	99.5%	XFG.3.4.1	hCoV-19/Brazil/MT-LACENMT-510657062/2025
3060	250704001602	7 meses	Masculino	LUCAS DO RIO VERDE	MT	16/09/2025	26	92.7%	XFG.3.4.1	hCoV-19/Brazil/MT-LACENMT-510657067/2025
3067	250103001640	11 anos	Feminino	CUIABÁ	MT	16/09/2025	20	98.5%	XFG.3.4.1	hCoV-19/Brazil/MT-LACENMT-510657068/2025
3070	250106007580	9 meses	Masculino	VÁRZEA GRANDE	MT	16/09/2025	22	99.7%	XFG.3.4.1	hCoV-19/Brazil/MT-LACENMT-510657070/2025
3075	250106007587	94 anos	Feminino	VÁRZEA GRANDE	MT	16/09/2025	26	94.4%	XFG.3.4.1	hCoV-19/Brazil/MT-LACENMT-510657071/2025
3104	250103001646	72 anos	Feminino	CUIABÁ	MT	17/09/2025	24	96.0%	XFG.3.4.1	hCoV-19/Brazil/MT-LACENMT-510657073/2025
3116	250704001606	58 anos	Masculino	LUCAS DO RIO VERDE	MT	19/09/2025	22	99.7%	XFG.3.4.1	hCoV-19/Brazil/MT-LACENMT-510657074/2025
3133	251307000159	18 dias	Feminino	QUERÊNCIA	MT	22/09/2025	19	99.7%	XFG	hCoV-19/Brazil/MT-LACENMT-510657075/2025
3134	251307000161	8 meses	Feminino	QUERÊNCIA	MT	22/09/2025	26	91.9%	XFG	hCoV-19/Brazil/MT-LACENMT-510657077/2025
3136	250106007659	78 anos	Masculino	VÁRZEA GRANDE	MT	22/09/2025	26	85.7%	XFG.3.4	hCoV-19/Brazil/MT-LACENMT-510657078/2025
3141	250149000134	21 amos	Masculino	CUIABÁ	MT	23/09/2025	23	95.3%	XFG.3.4.1	hCoV-19/Brazil/MT-LACENMT-510657079/2025
3146	250143000220	51 anos	Masculino	CUIABÁ	MT	23/09/2025	15	99.7%	XFG	hCoV-19/Brazil/MT-LACENMT-510657081/2025
3151	250149000135	72 anos	Masculino	CUIABÁ	MT	24/09/2025	15	99.7%	XFG.3.4.1	hCoV-19/Brazil/MT-LACENMT-510657082/2025
3152	250149000136	69 anos	Masculino	CUIABÁ	MT	24/09/2025	23	94.6%	XFG.3.4.1	hCoV-19/Brazil/MT-LACENMT-510657083/2025
3154	250102013156	18 anos	Feminino	CUIABÁ	MT	24/09/2025	25	94.5%	XFG.3.4.1	hCoV-19/Brazil/MT-LACENMT-510657084/2025
3176	250722000208	77 anos	Masculino	SINOP	MT	25/09/2025	19	99.7%	XFG	hCoV-19/Brazil/MT-LACENMT-510657086/2025
3188	250704001614	4 anos	Masculino	LUCAS DO RIO VERDE	MT	25/09/2025	22	99.7%	XFG.3.4.1	hCoV-19/Brazil/MT-LACENMT-510657087/2025

A árvore filogenética foi elaborada através do Nextclade, ilustrando a diferença de mutações ao longo da evolução e suas respectivas linhagens (**Figura 2**). Todos os genomas sequenciados passaram no controle de qualidade, sendo considerados aptos ao depósito na plataforma GISAID.

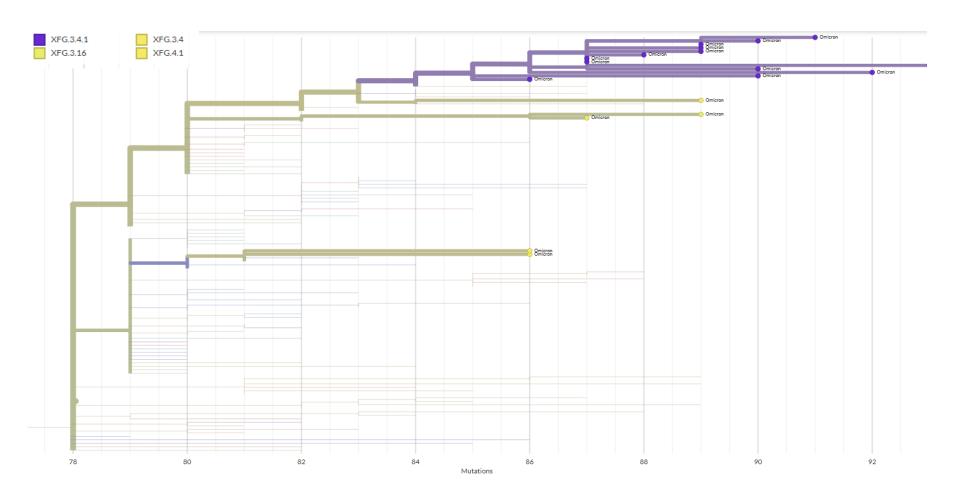


Figura 2. Árvore filogenética das linhagens identificadas de Sars-CoV-2. Acesso 20/10/2025 (https://clades.nextstrain.org/tree).

Governo do Estado de Mato Grosso SES-Secretaria de Estado de Saúde

Secretaria Adjunta de Atenção e Vigilância em Saúde

Laboratório Central de Saúde Pública de Mato Grosso-LACEN/MT A análise dos resultados permitiu concluir que os genomas gerados nesta investigação foi a XFG, essa linhagem foi identifica no estado de Mato Grosso em amostras coletadas em agosto de 2025, e continua com o mesmo perfil, todas sendo variante Ômicron.

A linhagem XFG foi recentemente designada como Variante sob Monitoramento (VUM) pela Organização Mundial da Saúde (OMS), em virtude do seu potencial de apresentar crescimento relativo em diferentes regiões do mundo. Trata-se de uma variante que reúne mutações na proteína Spike capazes de reduzir, em certa medida, a ação de anticorpos neutralizantes. No entanto, até o momento, não há evidências de que a XFG esteja associada a formas mais graves da doença nem de que comprometa significativamente a eficácia das vacinas ou terapias antivirais disponíveis. Por essa razão, permanece na categoria de monitoramento, o que implica vigilância epidemiológica contínua, mas sem mudanças imediatas nos protocolos médicos ou de vacinação.

Geneticamente, a XFG é uma descendente da Ômicron, classificada como recombinante, uma vez que surgiu a partir da coinfecção por duas linhagens distintas, LF.7 e LP.8.1.2, processo que resultou na mistura de material genético e no aparecimento de uma nova linhagem.

O LACEN-MT implementou um programa de vigilância genômica ativa, que se configura como um pilar essencial para a detecção precoce e acompanhamento das subvariantes da Ômicron. Esta vigilância desempenha um papel estratégico na identificação de novas variantes, permitindo a antecipação de medidas para evitar a propagação acelerada do vírus e a ocorrência de novos surtos, além de mitigar o risco de futuras pandemias.

Adicionalmente, a vigilância genômica contribui para a adaptação das estratégias de saúde pública, viabilizando a personalização de intervenções preventivas e a melhoria na eficácia das vacinas. Ao priorizar a análise genética do vírus, Mato Grosso se posiciona na vanguarda da resposta às ameaças virais, promovendo maior segurança e bem-estar à população. Adicionalmente, a vigilância genômica contribui para a adaptação das estratégias de saúde pública, viabilizando a personalização de intervenções preventivas e a melhoria na eficácia das vacinas. Ao priorizar a análise genética do vírus, Mato Grosso se posiciona na vanguarda da resposta às ameaças virais, promovendo maior segurança e bem-estar à população

REFERÊNCIAS

- 1- Cleemput, S. et al. "Genome Detective Coronavirus Typing Tool for rapid identification and characterization of novel coronavirus genomes." Bioinformatics, 2020.
- 2- Rando HM, et al. Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through Analysis of Viral Genomics and Structure. mSystems. 2021 Oct 26;6(5):e0009521. doi: 10.1128/mSystems.00095-21. Epub 2021 Oct 26. Erratum in: mSystems. 2022 Jan 25;:e0144721. PMID: 34698547; PMCID: PMC8547481.
- 3- Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382:1199-207. doi: 10.1056/NEJMoa2001316.
- 4- CHEN, J. et al. Omicron variant (B. 1.1. 529): Infectivity, vaccine breakthrough, and antibody resistance. Journal of chemical information and modeling, v. 62, n. 2, p. 412- 422, 2022.
- 5- https://www.who.int/docs/default-source/coronaviruse/18122023 jn.1 ire clean.pdf?sfvrsn=6103754a 3 acesso 19/01/2024)
- 6- Wang X, Lu L, Jiang S. SARS-CoV-2 Omicron subvariant BA.2.86: limited potential for global spread. Signal Transduct Target Ther. 2023 Nov 30;8(1):439. doi: 10.1038/s41392-023-01712-0. PMID: 38036521; PMCID: PMC10689828.

Responsáveis técnicos

Stephanni Figueiredo da Silva

Júlia Deffune Profeta Cidin Almeida

Elaine Cristina de Oliveira (Diretora do LACEN-MT)

